This packet contains problems involving skills you should already know. Please take your time with these problems and SHOW YOUR WORK. Do not use a calculator unless otherwise noted. Use online resources to help you if you forget how to work out a problem.

A. Simplify. Show the work that leads to your answer.

$$\frac{x-4}{x^2-3x-4}$$

2)
$$\frac{5-x}{x^2-25}$$

B. Simplify each expression in order to obtain a single fraction. Show all work.

$$\frac{1}{x+h} - \frac{1}{x}$$

$$\frac{\frac{2}{x^2}}{\frac{10}{x^5}}$$

C. If $f(x) = 1 - x^2$ and g(x) = 2x + 1, find:

$$1) \qquad f(g(x))$$

$$\frac{g(x+h)-g(x)}{h}$$

3)
$$g(f(4))$$

- D. Using point-slope form $y y_1 = m(x x_1)$, write an equation for the line...
- 1) with slope –2, containing the point (3, 4)

2) containing the points (1, -3) and (-5, 2)

3) with slope 0, containing the point (4, 2)

- 4) perpendicular to the line in #1, containing the point (3, 4)
- E. Find the equation of all vertical (x = ?) and horizontal (y = ?) asymptotes, if they exist.

$$y = \frac{x}{x-3}$$

$$y = \frac{x^3 + 4}{x^2 - 1}$$

F. For each of the following, sketch the function and then determine its domain and range.

$$y = \frac{1}{x+1}$$

$$2) \quad y = 3\sin 2x$$

G. Complete the following identities.

1)
$$\sin^2 x + \cos^2 x =$$

1)
$$\sin^2 x + \cos^2 x =$$
 _____ 2) $1 + \tan^2 x =$ _____

H. Factor the following completely.

1)
$$2x^2 - 13x - 15$$

2)
$$^4 - 13t^2 + 36 t$$

I. Multiply and simplify your results.

$$1) \frac{6s^2}{5t^3} \bullet \frac{10st}{6s^3}$$

2)
$$\frac{x^2-4}{6} \bullet \frac{2x-4}{x+2}$$

2)
$$\frac{x^2-4}{6} \bullet \frac{2x-4}{x+2}$$
 3) $\frac{3y+9}{14y} \bullet \frac{y^3}{y^2-9}$

J. Determine the exact value of each expression. Remember NO CALCULATORS!

1)
$$\sin 0 =$$

$$\sin\frac{3\pi}{4} = \underline{\qquad}$$

3)
$$\cos \pi =$$

$$\cos \frac{7\pi}{6} = \underline{\hspace{1cm}}$$

$$\tan\frac{7\pi}{4} = \underline{\hspace{1cm}}$$

$$\csc \frac{2\pi}{3} = \underline{\qquad}$$

$$\sec\frac{3\pi}{2} = \underline{\hspace{1cm}}$$

$$\cot \frac{11\pi}{6} = \underline{\qquad}$$

$$\sin\frac{-\pi}{3} = \underline{\qquad}$$

$$\cos\frac{-\pi}{2} = \underline{\qquad}$$

$$\arcsin \frac{\sqrt{3}}{2} = \underline{\qquad}$$

13)
$$\tan^{-1}(-1) = ____$$
 14) $\arccos(1) = _____$

14)
$$\arccos(1)_{=}$$

$$\arcsin\left(-\frac{1}{2}\right) = \underline{\qquad}$$

K. Solve the equation for x, where x is a real number.

1)
$$5\ln(2x+1)-3=6$$

$$\frac{4}{x-1} - \frac{1}{6} = \frac{5}{x+3}$$

L. Solve each equation on the interval $[0,2\pi)$.

$$4\sin^2 x = 1$$

2)
$$2\cos x + 3 = 0$$

M. Rewrite to solve for z.

1)
$$4x + 10yz = 0$$

$$h = \sqrt[3]{\frac{2x^4}{z}}$$

Answer sheet for Honors Calculus.	Name	
A.	G.	
1	1	
2	2	
B.	H.	
1	1	
2	2	
C.	I.	
1	1	
2	2	
3	3	
D.	J.	
1	1	13
2	2	14
	3	15
3	4	
4	5	
	6	
E.	7	
1	8	
2	9	
	10	
F.	11	

12. _____

2. _____

K.	
1	
2	_
L.	
1	
2	
	•
M.	
1	
2	